Где можно наблюдать капиллярные явления. Капиллярные явления (физика)

Пусть жидкость находится в каком-либо сосуде. Если расстояния между поверхностями, ограничивающими жидкость сравнимы с радиусом кривизны поверхности жидкости, то такие сосуды называются капиллярами . Явления, происходящие в капиллярах, называются капиллярными явлениями . К капиллярным явлениям относят капиллярный подъём жидкости и капиллярное сцепление между смачиваемыми поверхностями.

Наиболее простыми и часто используемыми капиллярами являются цилиндрические капилляры (рис.10.10). Поверхность жидкости в таких капиллярах является сферической. Пусть r - радиус кривизны поверхности жидкости, R – радиус капилляра, θ – краевой угол. В случае частичного смачивания жидкость будет подниматься по капилляру под действием давления Лапласа, до тех пор, пока его не скомпенсирует гидравлическое давление жидкости:

Где ρ – плотность жидкости, g – ускорение силы тяжести, h – высота капиллярного подъёма. Радиус кривизны поверхности жидкости удобно выразить через радиус капилляра, который можно легко измерить: . Подставляя давление Лапласа для сферической поверхности выражение (10-12), получим:

В случае полного смачивания θ =0 о, cos θ =1 , r = R и формула высоты капиллярного подъёма имеет вид:

При полном несмачивании θ=180 о, cos θ = - 1, и высота капиллярного подъёма будет отрицательной, то есть поверхность жидкости опустится на величину h (рис. 10.11).

Интересно отметить, что в сообщающихся капиллярах высота уровня жидкости не одинакова. Наибольший капиллярный подъём наблюдается в самом узком капилляре, а наименьший – в самом широком капилляре (рис.10.12).

Для полного смачивания . Капиллярные явления наблюдаются при подъёме воды к поверхности почвы, при использовании промокательной бумаги, тряпки, при подъёме керосина в фитилях и т.п.

С повышением температуры коэффициент поверхностного натяжения жидкостей уменьшается, а при критической температуре равен нулю. Коэффициент поверхностного натяжения жидкостей зависит также от плотности и молярной массы жидкости. Причём зависимость коэффициента поверхностного натяжения от температуры выражена тем сильнее, чем больше плотность жидкости и меньше её молярная масса. Для определения коэффициента поверхностного натяжения можно использовать полуэмпирическую формулу:

Здесь В – постоянный коэффициент, практически одинаковый для всех жидкостей, Т к – критическая температура, ρ- плотность жидкости, μ – её молярная масса, τ- небольшая величина размерности температуры. Формула (10-14) неприменима вблизи критической температуры. Коэффициент поверхностного натяжения водных растворов зависит от рода растворённого вещества. Одни вещества, например, такие как спирт, мыло, стиральные порошки, растворённые в воде, имеющие меньшую, чем у воды плотность, приводят к уменьшению коэффициента поверхностного натяжения и называются поверхностно активными веществами . Поверхностно активные вещества применяют в качестве смачивателей, флотационных реагентов, пенообразователей, диспергаторов- понизителей твёрдости, пластифицирующих добавок, модификаторов кристаллизации и т.п. Увеличение концентрации таких веществ приводит к уменьшению коэффициента поверхностного натяжения. Другие вещества, растворённые в воде, например, сахар, соль, приводят к увеличению плотности раствора и увеличивают коэффициент поверхностного натяжения. Увеличение концентрации таких веществ приводит к увеличению коэффициента поверхностного натяжения. Для экспериментального определения коэффициентов поверхностного натяжения используют несколько методов измерения: метод Ребиндера, метод капиллярных волн, метод капли и пузырька и др.

Капиллярность (от лат.Capillaris - волосяной ) - физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например, ртуть в стеклянной трубке. На основе капиллярности основана жизнедеятельность животных и растений, химические технологии, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем). Капиллярность почвы определяется скоростью, с которой вода поднимается в почве и зависит от размера промежутков между почвенными частицами. Капиллярами называются тонкие трубки, а также самые тонкие сосуды в организме человека и других животных.

Особенно хорошо наблюдается искривление мениска жидкости в тонких трубках, называемых капиллярами. Если в сосуд с жидкостью опустить капилляр, стенки которого смачиваются жидкостью, то жидкость поднимается по капилляру на некоторую высоту h (рис.50.1). Это объясняется тем, что искривление поверхности жидкости вызывает дополнительно молекулярное давление. Если поверхность выпуклая и имеет сферическую форму, то добавочное давление составит

Рисунок 50.1

В случае выпуклого мениска (r > 0) суммарное давление больше атмосферного и жидкость опускается по капилляру. Если мениск вогнутый (r < 0), суммарное давление меньше атмосферного и жидкость поднимается по капилляру. Жидкость поднимается (или опускается) до тех пор, пока гидростатическое давление р = ρqh столба жидкости высотой h не компенсирует добавочное (Лапласовское) давление р л. (Лаплас установил зависимость этого давления от формы мениска.) В этом случае

где ρ – плотность жидкости; g – ускорение свободного падения, r - радиус капилляра, R – радиус кривизны мениска.

Высота поднятия (глубина опускания) жидкости в капилляре:

.

§ 51. Явление капиллярности в быту, природе и технике

Явление капиллярности в быту играет огромную роль в самых разнообразных процессах, происходящих в природе. Например, проникновение влаги из почвы в растения, в стебли и листья обусловлено капиллярностью. Клетки растения образуют капиллярные каналы, и чем меньше радиус капилляра, тем выше по нему поднимается жидкость. Процесс кровообращения тоже связан с капиллярностью. Кровеносные сосуды являются капиллярами.

Особенно большое значение имеет капиллярность почвы. По мельчайшим сосудам влага из глубины перемешивается к поверхности почвы. Если хотят уменьшить испарение влаги, то почву рыхлят, разрушая капилляры. С целью увеличения притока влаги из глубины почву укатывают, увеличивая количество капиллярных каналов. В технике капиллярные явления имеют большоезначения в процессах сушки, в строительстве.

§ 52. Давление под искривленной поверхностью жидкости

Сферическая выпуклая поверхность производит на жидкость дополнительное давление, вызванное силами внутреннего натяжения, направленными внутрь жидкости, ,R – радиус сферы. Если поверхность жидкости вогнутая, то результирующая сила поверхностного натяжения направлена из жидкости и давление внутри жидкости .

Избыточное давление внутри мыльного пузыря радиуса R вызывается действием обоих поверхностных слоев тонкой сферической мыльной пленки:

Рисунок 52.1

В общем случае избыточное давление для произвольной поверхности жидкости описывается формулой Лапласа:

, (52.1)

где и- радиусы кривизны двух любых взаимно перпендикулярных сечений поверхности жидкости в данной точке.

Радиусы кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.

Цели урока:

  • изучение важнейших явлений и свойств природы – смачивания, не смачивания, капиллярных явлений.

Задачи урока:

Обучающие: углубление в явления смачивания и не смачивания а так же капиллярность жидкости, узнать сферу их применения;

Развивающие: развить у учащихся творческого мышления и речи;

Основные термины:

Смачивание – это поверхностное явление, которое заключается в взаимодействии поверхности твёрдого тела (другой жидкости) с жидкостью.

Угол смачивания (показывает степень смачивания) – это угол, который образованный касательными плоскостями к межфазным поверхностям, которые ограничивают смачивающую жидкость, при этом всём вершина угла лежит на линии раздела трёх фаз.

На видео представлено капиллярное течение жидкости

Искривление поверхности приводит к появлению дополнительного капиллярного давления в жидкости Dp, величина которого связана со средней кривизной r поверхности уравнением Лапласа: Dp = p1 – p2 = 2s12/r, где (s12 – поверхностное натяжение на границе двух сред; p1 и p2 – давление в жидкости 1 и контактирующей с ней среде 2.

Области применения Смачивание может объяснить применение моющих средств, тот факт, почему руки, которые в масле или смазке легче смыть бензином, чем водой, а так же почему гуси выходят сухими их воды и др. Объяснение капиллярных явлений происходит в движении воды в растениях и капиллярах. А так же при обработке почвы. Например: сохранение влаги рыхлением и др., разрушая капилляры. А так же капиллярное явление может объяснить электрические и ядерные явления, позволяет выявлять трещины с раскрытием от 1 мкм, которые невозможно увидеть невооруженным глазом.

Выводы.

Мы живём в мире самых удивительных явлений природы. Их очень много. Мы сталкиваемся с ними каждый день, не задумываясь о сущности. Но человек как разумный феномен должен понимать суть этих явлений. Такие явления как смачивание и не смачивание, капиллярное явление очень широко распространены в технике и природе. Они незаменимы в повседневной жизни и в решении научно-технических задач. Эти знания дают нам ответы на многие вопросы. Например, почему капля является в свободном полете или почему планеты и звёзды имеют шарообразную форму, одни твёрдые тела хорошо смачиваются жидкостью, а другие нет. Почему капиллярные явления могут всасывать питательные элементы, влагу из почвы корней растений, или почему кровообращение в животных организмах основано на капиллярном явлении и т. д.

Контролирующий блок:

1.Что такое капилляр?

2.Как распознать смачивание и не смачивание?

3.Приведите пример смачивания.

4.Что такое капиллярное явление?

5.Приведите пример не смачивания.

Домашнее задание.

Ход роботы

1.Поместите капли воды и масла на стеклянную, алюминиевую, медную, парафиновую пластины.

2.Зарисуйте формы капель.

3.Рассмотрите капли и сделайте выводы о взаимосвязи молекул твёрдого тела и жидкости.

4.Эти результаты заносите в таблицу.

5.Добавьте с помощью шприца в смесь воды и спарта немного оливкого масла.

6.Пропустите через центр масляного шара проволоку и вращайте её.

7.Обратите внимание как изменяется форма капли.

8.Сделайте выводы о форме поверхности жидкости.

Плёнка воды, которая находится на поверхности, является для многих организмов при движении, опорой. Она наблюдается у мелких насекомых и паукообразных. Самые известные нам водомерки, которые опираются на воду только конечными члениками широко расставленных лапок. Лапка которая покрыта воскообразным налётом, не смачивается водой. Поверхностный слой воды прогибается под давлением лапки, и образовывают небольшие углубления. (рисунок 6) Перья и пух водоплавающих птиц всегда обильно смазаны жировыми выделениями особых желёз. Это объясняет их непромокаемость. Толстый слой воздуха, который находится между перьями утки и не вытесняемый оттуда водой, не только защищает утку от потери тепла, но и чрезвычайно увеличивает запас плавучести.

Изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке.

На основе капилярности основана жизнедеятельность животных и растений, химические технологии, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем). Капиллярность почвы определяется скоростью, с которой вода поднимается в почве и зависит от размера промежутков между почвенными частицами.

Капиллярами назваются тонкие трубки, а также самые тонкие сосуды в организме человека и других животных (см. Капилляр (биология)).

См. также

Литература

  • Прохоренко П. П. Ультразвуковой капиллярный эффект / П. П. Прохоренко, Н. В. Дежкунов, Г. Е. Коновалов; Под ред. В. В. Клубовича. 135 с. Минск: «Наука и техника», 1981.

Ссылки

  • Горин Ю. В. Указатель физических эффектов и явлений для использования при решении изобретательских задач (ТРИЗ-инструмент) // Глава. 1.2 Поверхностное натяжение жидкостей. Капиллярность.

Wikimedia Foundation . 2010 .

Смотреть что такое "Капилляр (физика)" в других словарях:

    Слово капилляр применяется для обозначения очень узких трубок, через которые может проходить жидкость. Подробнее смотри в статье Капиллярный эффект. Капилляр (биология) самый мелкий вид кровеносных сосудов. Капилляр (физика) Капиллярный… … Википедия

    Критерий Ландау сверхтекучести соотношение между энергиями и импульсами элементарных возбуждений системы (фононов), обуславливающее возможность её нахождения в сверхтекучем состоянии. Содержание 1 Формулировка критерия 2 Вывод критерия … Википедия

    Внешний блок сплит системы и конденсаторы (вентиляторные градирни) торгового холодильного оборудования на одной стойке Климатическое и холодильное оборудование оборудование, основанное на работе холодильных маши … Википедия

    Изменение температуры газа в результате медленного протекания его под действием постоянного перепада давления сквозь дроссель местное препятствие потоку газа (капилляр, вентиль или пористую перегородку, расположенную в трубе на пути… …

    Представляет собой бесцветную прозрачную жидкость, кипящую при атмосферном давлении при температуре 4,2 К (жидкий 4He). Плотность жидкого гелия при температуре 4,2 К составляет 0,13 г/см³. Обладает малым коэффициентом преломления, из за… … Википедия

    Эффект фонтанирования, появление в сверхтекучей жидкости разности давлений Δр, обусловленной разностью температур ΔТ (см. Сверхтекучесть). Т. э. проявляется в жидком сверхтекучем гелии в различии уровней жидкости в двух сосудах,… … Большая советская энциклопедия

    Каждый из нас без труда припомнит немало веществ, которые он считает жидкостями. Однако дать точное определение этого состояния вещества не так то просто, поскольку жидкости обладают такими физическими свойствами, что в одних отношениях они… … Энциклопедия Кольера

    Капиллярность (от лат. capillaris волосяной), капиллярный эффект физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях… … Википедия

Уверены ли вы, что понимаете, каким образом работает обычное полотенце? Или почему клей склеивает поверхности? Или почему горит свечка? А почему с мылом руки мыть намного эффективнее, чем без мыла? Ответы на все эти вопросы вы получите на данном уроке. Потому что все они, так или иначе, связаны со смачиванием поверхностей и капиллярными явлениями.

2. Зная коэффициент поверхностного натяжения воды и ее плотность, определите диаметр обычной медицинской пипетки по высоте столбика воды, поднимающегося по пипетке без резинового колпачка.

3. Рассмотрите следующие вопросы и ответы на них:

Список вопросов-ответов

Вопрос: Как капиллярный эффект зависит от длины трубки?

Ответ: Капиллярный эффект никак не зависит от длины трубки. Посмотрите на формулу для определения высоты поднятия жидкости в трубке. В эту формулу не входит длина трубки.

Вопрос: Чем отличается процесс смачивания на Земле и в космическом корабле?

Ответ: Ничем, поскольку процесс смачивания происходит за счет сил взаимодействия молекул жидкости, а они не зависят от наличия или отсутствия веса.

Вопрос: Как еще можно пронаблюдать капиллярные явления на опыте?

Ответ: Возьмите шнурок от ботинка и опустите его одним концом в стакан с водой. Через некоторое время вода поднимется по тонким волокнам шнурка, и весь шнурок окажется мокрым.

Вопрос: Почему нельзя сделать «вечный двигатель», который работал бы на капиллярном эффекте?

Ответ: Действительно, кажется, что возможно построить вечный двигатель на капиллярном эффекте, если взять трубочку высоты, меньшей, чем высота столбика жидкости. Однако капелька сверху трубки не будет стекать по ней, поскольку ее будут удерживать те же силы поверхностного натяжения, которые ее поднимали. Поэтому такой «вечный двигатель» не будет работать.

Вопрос: Как будет вести себя капля в капилляре переменной толщины?

Ответ: Если жидкость смачивает капилляр, она будет двигаться в сторону уменьшения толщины капилляра, если же жидкость несмачивает капилляр, то она будет двигаться в сторону увеличения толщины капилляра. (Подробное обоснование см. И.М. Гельфгат, Л.Э. Генденштейн, Л.А. Кирик. 1001 задача по физике с указаниями и решениями, задача 10.40 )