Как умножить числа с разными основаниями. Степень и ее свойства

Имеют одинаковые степеней, а показатели степеней неодинаковы, 2² * 2³ , то результатом будет основание степени с тем же одинаковым основанием членов произведения степеней, возведённого в показатель степени, равный сумме показателей всех перемножаемых степеней.

2² * 2³ = 2²⁺³ = 2⁵ = 32

Если члены произведения степеней имеют разные основания степеней, а показатели степеней одинаковы, например, 2³ * 5³ , то результатом будет произведение оснований этих степеней, возведённое в показатель степени, равный этому одинаковому показателю степени.

2³ * 5³ = (2*5)³ = 10³ = 1000

Если перемножаемые степени равны между собой, например, 5³ * 5³ , то результатом будет степень с основанием, равного этим одинаковым основаниям степеней, возведённое в показатель степени, равный показателю степеней, умноженного на количество этих одинаковых степеней.

5³ * 5³ = (5³)² = 5³*² = 5⁶ = 15625

Или другой пример с таким же результатом:

5² * 5² * 5² = (5²)³ = 5²*³ = 5⁶ = 15625

Источники:

  • Что такое степень с натуральным показателем
  • произведение степеней

Математические действия со степенями можно выполнять только в том случае, когда основания показателей степени одинаковы, и когда между ними стоят знаки умножения или деления. Основание показателя степени – это число, которое возводится в степень.

Инструкция

Если числа делятся друг на друга (см 1), то у (в данном примере – это число 3) появляется степень, которая образуется из вычитания показателей степени. Причем, это действие проводится впрямую: из первого показателя вычитается второй. Пример 1. Введем : (а)в, где в скобках – а - основание, за скобками – в – показатель степени. (6)5: (6)3 = (6)5-3 = (6) 2 = 6*6 = 36.Если в ответе получается число в отрицательной степени, то такое число преобразуется в обыкновенную дробь, в числителе которой стоит единица, а в знаменателе основание с полученным при разности показателем степени, только в положительном виде (со знаком плюс). Пример 2. (2) 4: (2)6 = (2) 4-6 = (2) -2 = 1/(2)2 = ¼. Деление степеней может быть записано в другом виде, через знак дроби, а не как указано в этом шаге через знак «:». От этого принцип решения не меняется, все производится точно также, только запись будет вестись со знаком горизонтальной (или косой) дроби, вместо двоеточия.Пример 3. (2) 4 /(2)6 = (2) 4-6 = (2) -2 = 1/(2)2 = ¼.

При умножении одинаковых оснований, имеющих степени, производится сложение степеней. Пример 4. (5) 2* (5)3 = (5)2+3 =(5)5 = 3125.Если показатели степеней имеют разные знаки, то их сложение проводится согласно математическим законам.Пример 5. (2)1* (2)-3 = (2) 1+(-3) = (2) -2 = 1/(2)2 = ¼.

Если основания показателей степени различаются, то скорое всего их можно привести к одному и тому же виду, путем математического преобразования. Пример 6. Пусть надо найти значение выражения: (4)2: (2)3. Зная, что число четыре можно представить как два в квадрате, решается данный пример так:(4)2: (2)3 = (2*2)2: (2)3. Далее при возведении в степень числа. Уже имеющего степень, показатели степеней умножаются друг на друга: ((2)2)2: (2)3 = (2)4: (2)3 = (2) 4-3 = (2)1 = 2.

Полезный совет

Помните, если данное основание кажется непохожим на второе основание, надо искать математический выход. Просто так разные числа не даются. Разве, что в учебнике наборщиком сделана опечатка.

Степенной формат записи числа - это сокращенная форма записи операции умножения основания на само себя. С числом, представленным в такой форме, можно осуществлять те же операции, что и с любыми другими числами, в том числе и возводить их в степень. Например, можно возвести в произвольную степень квадрат числа и получение результата на современном уровне развития техники не составит какой-либо трудности.

Вам понадобится

  • Доступ в интернет или калькулятор Windows.

Инструкция

Для возведения квадрата в степень используйте общее правило возведения в степень , уже имеющего степенной показатель. При такой операции показатели перемножаются, а основание остается прежним. Если основание обозначить как x, а исходный и дополнительный показатели - как a и b, записать это правило в общем виде можно так: (xᵃ)ᵇ=xᵃᵇ.

Операции со степенями и корнями. Степень с отрицательным ,

нулевым и дробным показателем. О выражениях, не имеющих смысла.

Операции со степенями.

1. При умножении степеней с одинаковым основанием их показатели складываются :

a m · a n = a m + n .

2. При делении степеней с одинаковым основанием их показатели вычитаются .

3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

( abc … ) n = a n · b n · c n

4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

( a / b ) n = a n / b n .

5. При возведении степени в степень их показатели перемножаются:

(a m ) n = a m n .

Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

2. Корень из отношения равен отношению корней делимого и делителя:

3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:


Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

Т еперь формула a m : a n = a m - n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

П р и м е р . a 4 : a 7 = a 4 - 7 = a - 3 .

Если мы хотим, чтобы формула a m : a n = a m - n была справедлива при m = n , нам необходимо определение нулевой степени.

Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

П р и м е р ы. 2 0 = 1, (5) 0 = 1, (3 / 5) 0 = 1.

Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а :

О выражениях, не имеющих смысла. Есть несколько таких выражений. любое число.

В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

Случай 3.


0 0 - любое число.

Действительно,


Р е ш е н и е. Рассмотрим три основных случая:

1) x = 0 это значение не удовлетворяет данному уравнению

(Почему?).

2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

что x – любое число; но принимая во внимание, что в

Нашем случае x > 0 , ответом является x > 0 ;

3) при x < 0 получаем: – x / x = 1, т. e . –1 = 1, следовательно,

В этом случае нет решения.

Таким образом, x > 0.

Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

Число c является n -ной степенью числа a когда:

Операции со степенями.

1. Умножая степени с одинаковым основанием их показатели складываются:

a m ·a n = a m + n .

2. В делении степеней с одинаковым основанием их показатели вычитаются:

3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

(abc…) n = a n · b n · c n …

4. Степень дроби равняется отношению степеней делимого и делителя:

(a/b) n = a n /b n .

5. Возводя степень в степень, показатели степеней перемножают:

(a m) n = a m n .

Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .

Операции с корнями.

1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

2. Корень из отношения равен отношению делимого и делителя корней:

3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:

5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:

Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .

Например . a 4:a 7 = a 4 - 7 = a -3 .

Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.

Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .

Выражения, преобразование выражений

Степенные выражения (выражения со степенями) и их преобразование

В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.

Навигация по странице.

Что такое степенные выражения?

Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, . После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

Определение.

Степенные выражения – это выражения, содержащие степени.

Приведем примеры степенных выражений . Причем будем их представлять согласно тому, как происходит развитие взглядов на от степени с натуральным показателем до степени с действительным показателем.

Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 3 2 , 7 5 +1 , (2+1) 5 , (−0,1) 4 , 3·a 2 −a+a 2 , x 3−1 , (a 2) 3 и т.п.

Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3 −2 , , a −2 +2·b −3 +c 2 .

В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2 x 2 +1 или . А после знакомства с , начинают встречаться выражения со степенями и логарифмами, к примеру, x 2·lgx −5·x lgx .

Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

Основные виды преобразований степенных выражений

Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений . Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий . Приведем примеры.

Пример.

Вычислите значение степенного выражения 2 3 ·(4 2 −12) .

Решение.

Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 4 2 ее значением 16 (при необходимости смотрите ), и во-вторых, вычисляем разность 16−12=4 . Имеем 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4 .

В полученном выражении заменяем степень 2 3 ее значением 8 , после чего вычисляем произведение 8·4=32 . Это и есть искомое значение.

Итак, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32 .

Ответ:

2 3 ·(4 2 −12)=32 .

Пример.

Упростить выражения со степенями 3·a 4 ·b −7 −1+2·a 4 ·b −7 .

Решение.

Очевидно, что данное выражение содержит подобные слагаемые 3·a 4 ·b −7 и 2·a 4 ·b −7 , и мы можем привести их: .

Ответ:

3·a 4 ·b −7 −1+2·a 4 ·b −7 =5·a 4 ·b −7 −1 .

Пример.

Представьте выражение со степенями в виде произведения.

Решение.

Справиться с поставленной задачей позволяет представление числа 9 в виде степени 3 2 и последующее использование формулы сокращенного умножения разность квадратов:

Ответ:

Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

Работа с основанием и показателем степени

Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7) 5−3,7 и (a·(a+1)−a 2) 2·(x+1) .

При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7) 5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,1 1,3 . А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a 2) 2·(x+1) мы получим степенное выражение более простого вида a 2·(x+1) .

Использование свойств степеней

Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие . Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

  • a r ·a s =a r+s ;
  • a r:a s =a r−s ;
  • (a·b) r =a r ·b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r·s .

Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство a m ·a n =a m+n верно не только для положительных a , но и для отрицательных, и для a=0 .

В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней . Здесь же мы ограничимся рассмотрением нескольких простых примеров.

Пример.

Представьте выражение a 2,5 ·(a 2) −3:a −5,5 в виде степени с основанием a .

Решение.

Сначала второй множитель (a 2) −3 преобразуем по свойству возведения степени в степень: (a 2) −3 =a 2·(−3) =a −6 . Исходное степенное выражение при этом примет вид a 2,5 ·a −6:a −5,5 . Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
a 2,5 ·a −6:a −5,5 =
a 2,5−6:a −5,5 =a −3,5:a −5,5 =
a −3,5−(−5,5) =a 2 .

Ответ:

a 2,5 ·(a 2) −3:a −5,5 =a 2 .

Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

Пример.

Найти значение степенного выражения .

Решение.

Равенство (a·b) r =a r ·b r , примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

Можно было выполнять преобразование исходного выражения и иначе:

Ответ:

.

Пример.

Дано степенное выражение a 1,5 −a 0,5 −6 , введите новую переменную t=a 0,5 .

Решение.

Степень a 1,5 можно представить как a 0,5·3 и дальше на базе свойства степени в степени (a r) s =a r·s , примененного справа налево, преобразовать ее к виду (a 0,5) 3 . Таким образом, a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6 . Теперь легко ввести новую переменную t=a 0,5 , получаем t 3 −t−6 .

Ответ:

t 3 −t−6 .

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей , которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a , б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a 0,3 , так как a 0,7 ·a 0,3 =a 0,7+0,3 =a . Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a 0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на чисел 30 и 45 , который равен 15 . Также, очевидно, можно выполнить сокращение на x 0,5 +1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)

б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x 1/2 , после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x 2,7 +1) 2 , это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

Преобразование выражений с корнями и степенями

Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция , которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств , и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 5 2·x+1 −3·5 x ·7 x −14·7 2·x−1 =0 .

Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
5 2·x ·5 1 −3·5 x ·7 x −14·7 2·x ·7 −1 =0 ,
5·5 2·x −3·5 x ·7 x −2·7 2·x =0 .

Дальше выполняется деление обеих частей равенства на выражение 7 2·x , которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

Теперь сокращаются дроби со степенями, что дает .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения

  • И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.
  • Зачем нужны степени?

    Где они тебе пригодятся?

    Почему тебе нужно тратить время на их изучение?

    Чтобы узнать ВСЕ О СТЕПЕНЯХ, читай эту статью.

    И, конечно же, знание степеней приблизит тебя к успешной сдаче ЕГЭ.

    И к поступлению в ВУЗ твоей мечты!

    Let"s go... (Поехали!)

    НАЧАЛЬНЫЙ УРОВЕНЬ

    Возведение в степень - это такая же математическая операция, как сложение, вычитание, умножение или деление.

    Сейчас объясню все человеческим языком на очень простых примерах. Будь внимателен. Примеры элементарные, но объясняющий важные вещи.

    Начнем со сложения.

    Объяснять тут нечего. Ты и так все знаешь: нас восемь человек. У каждого по две бутылки колы. Сколько всего колы? Правильно - 16 бутылок.

    Теперь умножение.

    Тот же самый пример с колой можно записать по-другому: . Математики - люди хитрые и ленивые. Они сначала замечают какие-то закономерности, а потом придумывают способ как быстрее их «считать». В нашем случае они заметили, что у каждого из восьми человек одинаковое количество бутылок колы и придумали прием, который называется умножением. Согласись, считается легче и быстрее, чем.


    Итак, чтобы считать быстрее, легче и без ошибок, нужно всего лишь запомнить таблицу умножения . Ты, конечно, можешь делать все медленнее, труднее и с ошибками! Но…

    Вот таблица умножения. Повторяй.

    И другой, красивее:

    А какие еще хитрые приемы счета придумали ленивые математики? Правильно -возведение числа в степень .

    Возведение числа в степень

    Если тебе нужно умножить число само на себя пять раз, то математики говорят, что тебе нужно возвести это число в пятую степень. Например, . Математики помнят, что два в пятой степени - это. И решают такие задачки в уме - быстрее, легче и без ошибок.

    Для этого нужно всего лишь запомнить то, что выделено цветом в таблице степеней чисел . Поверь, это сильно облегчит тебе жизнь.

    Кстати, почему вторую степень называют квадратом числа, а третью - кубом ? Что это значит? Очень хороший вопрос. Сейчас будут тебе и квадраты, и кубы.

    Пример из жизни №1

    Начнем с квадрата или со второй степени числа.

    Представь себе квадратный бассейн размером метра на метра. Бассейн стоит у тебя на даче. Жара и очень хочется купаться. Но… бассейн без дна! Нужно застелить дно бассейна плиткой. Сколько тебе надо плитки? Для того чтобы это определить, тебе нужно узнать площадь дна бассейна.

    Ты можешь просто посчитать, тыкая пальцем, что дно бассейна состоит из кубиков метр на метр. Если у тебя плитка метр на метр, тебе нужно будет кусков. Это легко… Но где ты видел такую плитку? Плитка скорее будет см на см. И тогда «пальцем считать» замучаешься. Тогда придется умножать. Итак, по одной стороне дна бассейна у нас поместится плиток (штук) и по другой тоже плиток. Умножив на, ты получишь плиток ().

    Ты заметил, что для определения площади дна бассейна мы умножили одно и то же число само на себя? Что это значит? Раз умножается одно и то же число, мы можем воспользоваться приемом «возведение в степень». (Конечно, когда у тебя всего два числа, все равно перемножить их или возвести в степень. Но если у тебя их много, то возводить в степень значительно проще и ошибок при расчетах получается тоже меньше. Для ЕГЭ это очень важно).
    Итак, тридцать во второй степени будет (). Или же можно сказать, что тридцать в квадрате будет. Иными словами, вторую степень числа всегда можно представить в виде квадрата. И наоборот, если ты видишь квадрат - это ВСЕГДА вторая степень какого-то числа. Квадрат - это изображение второй степени числа.

    Пример из жизни №2

    Вот тебе задание, посчитать, сколько квадратов на шахматной доске с помощью квадрата числа... По одной стороне клеток и по другой тоже. Чтобы посчитать их количество, нужно восемь умножить на восемь или… если заметить, что шахматная доска - это квадрат со стороной, то можно возвести восемь в квадрат. Получится клетки. () Так?

    Пример из жизни №3

    Теперь куб или третья степень числа. Тот же самый бассейн. Но теперь тебе нужно узнать, сколько воды придется залить в этот бассейн. Тебе нужно посчитать объем. (Объемы и жидкости, кстати, измеряются в кубических метрах. Неожиданно, правда?) Нарисуй бассейн: дно размером на метра и глубиной метра и попробуй посчитать, сколько всего кубов размером метр на метр войдет в твой бассейн.

    Прямо показывай пальцем и считай! Раз, два, три, четыре…двадцать два, двадцать три… Сколько получилось? Не сбился? Трудно пальцем считать? Так-то! Бери пример с математиков. Они ленивы, поэтому заметили, что чтобы посчитать объем бассейна, надо перемножить друг на друга его длину, ширину и высоту. В нашем случае объем бассейна будет равен кубов… Легче правда?

    А теперь представь, насколько математики ленивы и хитры, если они и это упростили. Свели все к одному действию. Они заметили, что длина, ширина и высота равна и что одно и то же число перемножается само на себя… А что это значит? Это значит, что можно воспользоваться степенью. Итак, то, что ты раз считал пальцем, они делают в одно действие: три в кубе равно. Записывается это так: .

    Остается только запомнить таблицу степеней . Если ты, конечно, такой же ленивый и хитрый как математики. Если любишь много работать и делать ошибки - можешь продолжать считать пальцем.

    Ну и чтобы окончательно убедить тебя, что степени придумали лодыри и хитрюги для решения своих жизненных проблем, а не для того чтобы создать тебе проблемы, вот тебе еще пара примеров из жизни.

    Пример из жизни №4

    У тебя есть миллиона рублей. В начале каждого года ты зарабатываешь на каждом миллионе еще один миллион. То есть каждый твой миллион в начале каждого года удваивается. Сколько денег у тебя будет через лет? Если ты сейчас сидишь и «считаешь пальцем», значит ты очень трудолюбивый человек и.. глупый. Но скорее всего ты дашь ответ через пару секунд, потому что ты - умный! Итак, в первый год - два умножить на два… во второй год - то, что получилось, еще на два, в третий год… Стоп! Ты заметил, что число перемножается само на себя раз. Значит, два в пятой степени - миллиона! А теперь представь, что у вас соревнование и эти миллиона получит тот, кто быстрее посчитает… Стоит запомнить степени чисел, как считаешь?

    Пример из жизни №5

    У тебя есть миллиона. В начале каждого года ты зарабатываешь на каждом миллионе еще два. Здорово правда? Каждый миллион утраивается. Сколько денег у тебя будет через года? Давай считать. Первый год - умножить на, потом результат еще на … Уже скучно, потому что ты уже все понял: три умножается само на себя раза. Значит в четвертой степени равно миллион. Надо просто помнить, что три в четвертой степени это или.

    Теперь ты знаешь, что с помощью возведения числа в степень ты здорово облегчишь себе жизнь. Давай дальше посмотрим на то, что можно делать со степенями и что тебе нужно знать о них.

    Термины и понятия... чтобы не запутаться

    Итак, для начала давай определим понятия. Как думаешь, что такое показатель степени ? Это очень просто - это то число, которое находится «вверху» степени числа. Не научно, зато понятно и легко запомнить…

    Ну и заодно, что такое основание степени ? Еще проще - это то число, которое находится внизу, в основании.

    Вот тебе рисунок для верности.

    Ну и в общем виде, чтобы обобщить и лучше запомнить… Степень с основанием « » и показателем « » читается как « в степени » и записывается следующим образом:

    Степень числа с натуральным показателем

    Ты уже наверное, догадался: потому что показатель степени - это натуральное число. Да, но что такое натуральное число ? Элементарно! Натуральные это те числа, которые используются в счете при перечислении предметов: один, два, три… Мы же когда считаем предметы не говорим: «минус пять», «минус шесть», «минус семь». Мы так же не говорим: «одна третья», или «ноль целых, пять десятых». Это не натуральные числа. А какие это числа как ты думаешь?

    Числа типа «минус пять», «минус шесть», «минус семь» относятся к целым числам. Вообще, к целым числам относятся все натуральные числа, числа противоположные натуральным (то есть взятые со знаком минус), и число. Ноль понять легко - это когда ничего нет. А что означают отрицательные («минусовые») числа? А вот их придумали в первую очередь для обозначения долгов: если у тебя баланс на телефоне рублей, это значит, что ты должен оператору рублей.

    Всякие дроби - это рациональные числа. Как они возникли, как думаешь? Очень просто. Несколько тысяч лет назад наши предки обнаружили, что им не хватает натуральных чисел для измерения длинны, веса, площади и т.п. И они придумали рациональные числа … Интересно, правда ведь?

    Есть еще иррациональные числа. Что это за числа? Если коротко, то бесконечная десятичная дробь. Например, если длину окружности разделить на ее диаметр, то в получится иррациональное число.

    Резюме:

    Определим понятие степени, показатель которой — натуральное число (т.е. целое и положительное).

    1. Любое число в первой степени равно самому себе:
    2. Возвести число в квадрат — значит умножить его само на себя:
    3. Возвести число в куб — значит умножить его само на себя три раза:

    Определение. Возвести число в натуральную степень — значит умножить число само на себя раз:
    .

    Свойства степеней

    Откуда эти свойства взялись? Сейчас покажу.

    Посмотрим: что такое и ?

    По определению:

    Сколько здесь множителей всего?

    Очень просто: к множителям мы дописали множителей, итого получилось множителей.

    Но по определению это степень числа с показателем, то есть: , что и требовалось доказать.

    Пример : Упростите выражение.

    Решение:

    Пример: Упростите выражение.

    Решение: Важно заметить, что в нашем правиле обязательно должны быть одинаковые основания!
    Поэтому степени с основанием мы объединяем, а остается отдельным множителем:

    только для произведения степеней!

    Ни в коем случае нельзя написать, что.

    2. то и есть -ая степень числа

    Так же, как и с предыдущим свойством, обратимся к определению степени:

    Получается, что выражение умножается само на себя раз, то есть, согласно определению, это и есть -ая степень числа:

    По сути это можно назвать «вынесением показателя за скобки». Но никогда нельзя этого делать в сумме:

    Вспомним формулы сокращенного умножения: сколько раз нам хотелось написать?

    Но это неверно, ведь.

    Степень с отрицательным основанием

    До этого момента мы обсуждали только то, каким должен быть показатель степени.

    Но каким должно быть основание?

    В степенях с натуральным показателем основание может быть любым числом . И правда, мы ведь можем умножать друг на друга любые числа, будь они положительные, отрицательные, или даже.

    Давайте подумаем, какие знаки (« » или « ») будут иметь степени положительных и отрицательных чисел?

    Например, положительным или отрицательным будет число? А? ? С первым все понятно: сколько бы положительных чисел мы друг на друга не умножали, результат будет положительным.

    Но с отрицательными немного интереснее. Мы ведь помним простое правило из 6 класса: «минус на минус дает плюс». То есть, или. Но если мы умножим на, получится.

    Определи самостоятельно, какой знак будут иметь следующие выражения:

    1) 2) 3)
    4) 5) 6)

    Справился?

    Вот ответы: В первых четырех примерах, надеюсь, все понятно? Просто смотрим на основание и показатель степени, и применяем соответствующее правило.

    В примере 5) все тоже не так страшно, как кажется: ведь неважно, чему равно основание - степень четная, а значит, результат всегда будет положительным.

    Ну, за исключением случая, когда основание равно нулю. Основание ведь не равно? Очевидно нет, так как (потому что).

    Пример 6) уже не так прост!

    6 примеров для тренировки

    Разбор решения 6 примеров

    Целыми мы называем натуральные числа, противоположные им (то есть взятые со знаком « ») и число.

    целое положительное число , а оно ничем не отличается от натурального, то все выглядит в точности как в предыдущем разделе.

    А теперь давайте рассмотрим новые случаи. Начнем с показателя, равного.

    Любое число в нулевой степени равно единице :

    Как всегда, зададимся вопросом: почему это так?

    Рассмотрим какую-нибудь степень с основанием. Возьмем, например, и домножим на:

    Итак, мы умножили число на, и получили то же, что и было - . А на какое число надо умножить, чтобы ничего не изменилось? Правильно, на. Значит.

    Можем проделать то же самое уже с произвольным числом:

    Повторим правило:

    Любое число в нулевой степени равно единице.

    Но из многих правил есть исключения. И здесь оно тоже есть - это число (в качестве основания).

    С одной стороны, в любой степени должен равняться - сколько ноль сам на себя ни умножай, все-равно получишь ноль, это ясно. Но с другой стороны, как и любое число в нулевой степени, должен равняться. Так что из этого правда? Математики решили не связываться и отказались возводить ноль в нулевую степень. То есть теперь нам нельзя не только делить на ноль, но и возводить его в нулевую степень.

    Поехали дальше. Кроме натуральных чисел и числа к целым относятся отрицательные числа. Чтобы понять, что такое отрицательная степень, поступим как в прошлый раз: домножим какое-нибудь нормальное число на такое же в отрицательной степени:

    Отсюда уже несложно выразить искомое:

    Теперь распространим полученное правило на произвольную степень:

    Итак, сформулируем правило:

    Число в отрицательной степени обратно такому же числу в положительной степени. Но при этом основание не может быть нулевым: (т.к. на делить нельзя).

    Подведем итоги:

    Задачи для самостоятельного решения:

    Ну и, как обычно, примеры для самостоятельного решения:

    Разбор задач для самостоятельного решения:

    Знаю-знаю, числа страшные, но на ЕГЭ надо быть готовым ко всему! Реши эти примеры или разбери их решение, если не смог решить и ты научишься легко справляться с ними на экзамене!

    Продолжим расширять круг чисел, «пригодных» в качестве показателя степени.

    Теперь рассмотрим рациональные числа. Какие числа называются рациональными?

    Ответ: все, которые можно представить в виде дроби, где и - целые числа, причем.

    Чтобы понять, что такое «дробная степень» , рассмотрим дробь:

    Возведем обе части уравнения в степень:

    Теперь вспомним правило про «степень в степени» :

    Какое число надо возвести в степень, чтобы получить?

    Эта формулировка - определение корня -ой степени.

    Напомню: корнем -ой степени числа () называется число, которое при возведении в степень равно.

    То есть, корень -ой степени - это операция, обратная возведению в степень: .

    Получается, что. Очевидно, этот частный случай можно расширить: .

    Теперь добавляем числитель: что такое? Ответ легко получить с помощью правила «степень в степени»:

    Но может ли основание быть любым числом? Ведь корень можно извлекать не из всех чисел.

    Никакое!

    Вспоминаем правило: любое число, возведенное в четную степень - число положительное. То есть, извлекать корни четной степени из отрицательных чисел нельзя!

    А это значит, что нельзя такие числа возводить в дробную степень с четным знаменателем, то есть выражение не имеет смысла.

    А что насчет выражения?

    Но тут возникает проблема.

    Число можно представить в виде дргих, сократимых дробей, например, или.

    И получается, что существует, но не существует, а ведь это просто две разные записи одного и того же числа.

    Или другой пример: раз, то можно записать. Но стоит нам по-другому записать показатель, и снова получим неприятность: (то есть, получили совсем другой результат!).

    Чтобы избежать подобных парадоксов, рассматриваем только положительное основание степени с дробным показателем .

    Итак, если:

    • — натуральное число;
    • — целое число;

    Примеры:

    Степени с рациональным показателем очень полезны для преобразования выражений с корнями, например:

    5 примеров для тренировки

    Разбор 5 примеров для тренировки

    Ну а теперь - самое сложное. Сейчас мы разберем степень с иррациональным показателем .

    Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением

    Ведь по определению иррациональные числа - это числа, которые невозможно представить в виде дроби, где и - целые числа (то есть, иррациональные числа - это все действительные числа кроме рациональных).

    При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах.

    Например, степень с натуральным показателем - это число, несколько раз умноженное само на себя;

    ...число в нулевой степени - это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось - поэтому результатом является только некая «заготовка числа», а именно число;

    ...степень с целым отрицательным показателем - это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

    Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель - это даже не действительное число.

    Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

    КУДА МЫ УВЕРЕНЫ ТЫ ПОСТУПИШЬ! (если научишься решать такие примеры:))

    Например:

    Реши самостоятельно:

    Разбор решений:

    1. Начнем с уже обычного для нас правила возведения степени в степень:

    ПРОДВИНУТЫЙ УРОВЕНЬ

    Определение степени

    Степенью называется выражение вида: , где:

    • основание степени;
    • — показатель степени.

    Степень с натуральным показателем {n = 1, 2, 3,...}

    Возвести число в натуральную степень n — значит умножить число само на себя раз:

    Степень с целым показателем {0, ±1, ±2,...}

    Если показателем степени является целое положительное число:

    Возведение в нулевую степень :

    Выражение неопределенное, т.к., с одной стороны, в любой степени - это, а с другой - любое число в -ой степени - это.

    Если показателем степени является целое отрицательное число:

    (т.к. на делить нельзя).

    Еще раз о нулях: выражение не определено в случае. Если, то.

    Примеры:

    Степень с рациональным показателем

    • — натуральное число;
    • — целое число;

    Примеры:

    Свойства степеней

    Чтобы проще было решать задачи, попробуем понять: откуда эти свойства взялись? Докажем их.

    Посмотрим: что такое и?

    По определению:

    Итак, в правой части этого выражения получается такое произведение:

    Но по определению это степень числа с показателем, то есть:

    Что и требовалось доказать.

    Пример : Упростите выражение.

    Решение : .

    Пример : Упростите выражение.

    Решение : Важно заметить, что в нашем правиле обязательно должны быть одинаковые основания. Поэтому степени с основанием мы объединяем, а остается отдельным множителем:

    Еще одно важное замечание: это правило - только для произведения степеней !

    Ни в коем случае нелья написать, что.

    Так же, как и с предыдущим свойством, обратимся к определению степени:

    Перегруппируем это произведение так:

    Получается, что выражение умножается само на себя раз, то есть, согласно определению, это и есть -я степень числа:

    По сути это можно назвать «вынесением показателя за скобки». Но никогда нельзя этого делать в сумме: !

    Вспомним формулы сокращенного умножения: сколько раз нам хотелось написать? Но это неверно, ведь.

    Степень с отрицательным основанием.

    До этого момента мы обсуждали только то, каким должен быть показатель степени. Но каким должно быть основание? В степенях с натуральным показателем основание может быть любым числом .

    И правда, мы ведь можем умножать друг на друга любые числа, будь они положительные, отрицательные, или даже. Давайте подумаем, какие знаки (« » или « ») будут иметь степени положительных и отрицательных чисел?

    Например, положительным или отрицательным будет число? А? ?

    С первым все понятно: сколько бы положительных чисел мы друг на друга не умножали, результат будет положительным.

    Но с отрицательными немного интереснее. Мы ведь помним простое правило из 6 класса: «минус на минус дает плюс». То есть, или. Но если мы умножим на (), получится - .

    И так до бесконечности: при каждом следующем умножении знак будет меняться. Можно сформулировать такие простые правила:

    1. четную степень, - число положительное .
    2. Отрицательное число, возведенное в нечетную степень, - число отрицательное .
    3. Положительное число в любой степени - число положительное.
    4. Ноль в любой степени равен нулю.

    Определи самостоятельно, какой знак будут иметь следующие выражения:

    1. 2. 3.
    4. 5. 6.

    Справился? Вот ответы:

    1) ; 2) ; 3) ; 4) ; 5) ; 6) .

    В первых четырех примерах, надеюсь, все понятно? Просто смотрим на основание и показатель степени, и применяем соответствующее правило.

    В примере 5) все тоже не так страшно, как кажется: ведь неважно, чему равно основание - степень четная, а значит, результат всегда будет положительным. Ну, за исключением случая, когда основание равно нулю. Основание ведь не равно? Очевидно нет, так как (потому что).

    Пример 6) уже не так прост. Тут нужно узнать, что меньше: или? Если вспомнить, что, становится ясно, что, а значит, основание меньше нуля. То есть, применяем правило 2: результат будет отрицательным.

    И снова используем определение степени:

    Все как обычно - записываем определение степеней и, делим их друг на друга, разбиваем на пары и получаем:

    Прежде чем разобрать последнее правило, решим несколько примеров.

    Вычисли значения выражений:

    Решения :

    Вернемся к примеру:

    И снова формула:

    Итак, теперь последнее правило:

    Как будем доказывать? Конечно, как обычно: раскроем понятие степени и упростим:

    Ну а теперь раскроем скобки. Сколько всего получится букв? раз по множителей - что это напоминает? Это не что иное, как определение операции умножения : всего там оказалось множителей. То есть, это, по определению, степень числа с показателем:

    Пример:

    Степень с иррациональным показателем

    В дополнение к информации о степенях для среднего уровня, разберем степень с иррациональным показателем. Все правила и свойства степеней здесь точно такие же, как и для степени с рациональным показателем, за исключением - ведь по определению иррациональные числа - это числа, которые невозможно представить в виде дроби, где и - целые числа (то есть, иррациональные числа - это все действительные числа, кроме рациональных).

    При изучении степеней с натуральным, целым и рациональным показателем, мы каждый раз составляли некий «образ», «аналогию», или описание в более привычных терминах. Например, степень с натуральным показателем - это число, несколько раз умноженное само на себя; число в нулевой степени - это как-бы число, умноженное само на себя раз, то есть его еще не начали умножать, значит, само число еще даже не появилось - поэтому результатом является только некая «заготовка числа», а именно число; степень с целым отрицательным показателем - это как будто произошел некий «обратный процесс», то есть число не умножали само на себя, а делили.

    Вообразить степень с иррациональным показателем крайне сложно (так же, как сложно представить 4-мерное пространство). Это, скорее, чисто математический объект, который математики создали, чтобы расширить понятие степени на все пространство чисел.

    Между прочим, в науке часто используется степень с комплексным показателем, то есть показатель - это даже не действительное число. Но в школе мы о таких сложностях не думаем, постичь эти новые понятия тебе представится возможность в институте.

    Итак, что мы делаем, если видим иррациональный показатель степени? Всеми силами пытаемся от него избавиться!:)

    Например:

    Реши самостоятельно:

    1) 2) 3)

    Ответы:

    КРАТКОЕ ИЗЛОЖЕНИЕ РАЗДЕЛА И ОСНОВНЫЕ ФОРМУЛЫ

    Степенью называется выражение вида: , где:

    Степень с целым показателем

    степень, показатель которой — натуральное число (т.е. целое и положительное).

    Степень с рациональным показателем

    степень, показатель которой — отрицательные и дробные числа.

    Степень с иррациональным показателем

    степень, показатель которой — бесконечная десятичная дробь или корень.

    Свойства степеней

    Особенности степеней.

    • Отрицательное число, возведенное в четную степень, - число положительное .
    • Отрицательное число, возведенное в нечетную степень, - число отрицательное .
    • Положительное число в любой степени - число положительное.
    • Ноль в любой степени равен.
    • Любое число в нулевой степени равно.

    ТЕПЕРЬ ТЕБЕ СЛОВО...

    Как тебе статья? Напиши внизу в комментариях понравилась или нет.

    Расскажи о своем опыте использования свойств степеней.

    Возможно у тебя есть вопросы. Или предложения.

    Напиши в комментариях.

    И удачи на экзаменах!

    Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

    Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

    Теперь самое главное.

    Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

    Проблема в том, что этого может не хватить…

    Для чего?

    Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

    Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

    Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

    Но и это - не главное.

    Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

    Но, думай сам...

    Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

    НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

    На экзамене у тебя не будут спрашивать теорию.

    Тебе нужно будет решать задачи на время .

    И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

    Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

    Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

    Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

    Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

    Как? Есть два варианта:

    1. Открой доступ ко всем скрытым задачам в этой статье -
    2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

    Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

    Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

    И в заключение...

    Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

    “Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

    Найди задачи и решай!